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Microwave study of quantum n-disk scattering
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~Received 16 September 1999!

We describe a wave-mechanical implementation of classically chaoticn-disk scattering based on thin two-
dimensional microwave cavities. Two-, three-, and four-disk scatterings are investigated in detail. The experi-
ments, which are able to probe the stationary Green’s function of the system, yield both frequencies and widths
of the low-lying quantum resonances. The observed spectra are found to be in good agreement with calcula-
tions based on semiclassical periodic orbit theory. Wave-vector autocorrelation functions are analyzed for
various scattering geometries, the small wave-vector behavior allowing one to extract the escape rate from the
quantum repeller. Quantitative agreement is found with the value predicted from classical scattering theory.
For intermediate energies, nonuniversal oscillations are detected in the autocorrelation function, reflecting the
presence of periodic orbits.

PACS number~s!: 05.45.Mt, 05.45.Ac, 03.65.Sq, 84.40.2x
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I. INTRODUCTION

The system ofn-disks on a plane is perhaps the simple
and paradigmatic example of a chaotic scattering sys
@1–5#. The classical differential cross section of a syst
with n.2 disks on a plane is singular, with singular poin
forming a Cantor set@1,3#. Thus the investigation of chaoti
scattering geometries naturally brings in the capability to
cess the intrinsicfractal nature of the underlying classica
repeller.

From the perspective of quantum-classical corresp
dence, the wave-mechanical counterpart of this ‘‘fractal p
ball game’’ is even more intriguing. Semiclassical attem
to treat this problem led to important theoretical advan
and to the development of sophisticated semiclassical to
notably cycle expansion, that represents one of the more
ductive applications of periodic orbit theory@5#.

From a broader perspective,n-disk scattering can be re
garded as the prototype of anopen quantum chaos system
For closed quantum chaotic systems~billiards in particular!,
theoretical and experimental results are available on spe
eigenvalues~which are purely real!, and a good understand
ing of both universal and nonuniversal features has b
reached@6#. Open chaotic systems are a special class of o
quantum systems, whereby bound states of a closed ge
etry are converted to long-lived metastable states due to
pling to continua. Accordingly, eigenvalues are intrinsica
complex, and their universal behavior is currently a subj
of considerable interest@7#.

Investigation ofn-disk scattering was originally stimu
lated by the attempt of modeling unimolecular reactions@3#.
However, the system turned out to be a good exemplifica
for a variety of physical situations, ranging from crossro
geometries for semiconductor devices, to electromagn
and acoustic scattering, and heavy-ion nuclear reactions@8#.

In spite of extensive theoretical analysis, there have b
few direct experimental implementations of such chao
model geometries so far. In this paper we present the res
of a systematic experimental study of the quantum re
nances and decay characteristic of two-dimensional~2D!
scattering repellers. The experiments utilize thin microwa
PRE 611063-651X/2000/61~4!/3652~12!/$15.00
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geometries where, under appropriate conditions, the unde
ing Helmholtz equation maps exactly into the tim
independent Schro¨dinger equation in two dimensions. Ex
periments were carried out forn51, 2, 3, and 4, as well as
for largen520, the latter corresponding to the so-called ra
dom Lorentz scatterer. A concise account of the main res
was presented in Ref.@9#.

The experiments, which are able to access the station
Green’s function of the system, yield the frequencies and
widths of the low-lying quantum resonances. We carried
semiclassical calculations of such resonances, which
found to reproduce the measured spectra reasonably w
Our experiments enable us to explore the role of symme
in a unique way by probing different irreducible represen
tions of the symmetry group of the scatterer. The experim
tal data are used to identify both universal and nonunive
signatures of the classical chaos in the transmission spe
through measures such as the spectral~wave-vector! autocor-
relation function.

Correlation functions are a valuable tool to extract k
information on the spectral properties of the system. In m
soscopic conductors, measurements of the magnetic
correlation of the conductivity have provided unique insig
into the manifestations of the chaotic classical dynamics
the quantum level@10#. Correlations of wave functions in
chaotic systems have been considered recently as a prob
classical ergodicity predictions@11#. In the present experi-
ments, we take advantage of our ability to vary the wa
vector of the system to directly access energy correlatio
that are difficult to extract in semiconductor microstructur
The smallk ~long time! behavior of the resulting autocorre
lation provides a measure of thequantum escape rate, which
is shown to be in good agreement with the correspond
classical value. For largek ~short time!, the contribution of
periodic orbits is evidenced through nonuniversal osci
tions of the autocorrelation function.

The content of the paper is organized as follows. Af
describing the experimental realization in Sec. II, the co
nections between electromagnetic and quantum-mecha
scattering, and between the observed transmission ampli
and the stationary Green’s function are elucidated in Sec.
3652 © 2000 The American Physical Society
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PRE 61 3653MICROWAVE STUDY OF QUANTUM n-DISK SCATTERING
In Sec. IV, the essential background on semiclassical the
is recalled, with emphasis on the role played by symme
properties. The remaining sections are devoted to the pre
tation and the interpretation of the experimental results
Sec. V, we present a comparison between the meas
traces and the semiclassical predictions for various scatte
geometries probed in the experiment, while in Sec. VI
focus on the analysis of spectral autocorrelations, fr
which the wave-mechanical escape rate can be extracted
overall discussion of the results and their implications,
gether with an outlook on open issues and future work,
presented in the conclusive section.

II. EXPERIMENTAL REALIZATION

The experiments were carried out in thin microwa
structures consisting of two highly conducting Cu pla
spacedd.6 mm and about 55355 cm2 in area. A picture
of a typical experimental setup is displayed in Fig. 1. Simi
experiments inclosedgeometries have provided direct obse
vation of scars@12#, enabled precise tests of eigenvalue s
tistics @13#, and allowed experimental studies of localizati
effects@14#. Disks and bars also made of Cu and of thickne
d were placed between the plates and in contact with th
Disks of radiusa52 and 5 cm were used in the experimen
In order to simulate an infinite system, microwave absor
material ECCOSORB AN-77 with thicknessd was sand-
wiched between the plates at the edges. It is a lamina
material and has a front surface~white! and a back surface
~gold!. It is designed to reflect less than220 dB of normally
incident energy above 1.2 GHz, relative to a metal plate.

FIG. 1. Photo of the experimental apparatus.~Top! closed cav-
ity. ~Bottom! open cavity.
ry
y
n-

n
ed
ng
e

An
-
re

s

r

-

s
.

.
r

ed

o

achieve the best reflection reduction, Cu bars are attache
the absorber from the outside. Microwaves were fed into
system by inserting a loop-terminating coaxial line in t
vicinity of the scatterers. Since we ensure that the relat
f , f c5c/2d525 GHz is valid for all operating frequencie
~herek52p f /c, c being the speed of light!, the only allowed
electromagnetic modes are a class of TM~transverse mag-
netic! modes with no variation along the directionz orthogo-
nal to the plates. The nonvanishing field components
these states are the axial component of the electric fieldEz ,
and transverse components of the magnetic fieldHx ,Hy , or
H5(1/ik) ẑ3¹Ez . Thus, essentially, the geometry of th
experiment can be regarded as two dimensional, the wh
field configuration being accessible from knowledge ofEz
alone. The output signal can be picked up by both direc
coupling to the axial electric fieldEz ~electric coupling! or
by measuring the associated transverse magnetic fielH
~magnetic coupling!. In the first configuration, a microwav
pin is inserted through appropriate holes drilled on the
plate of the cavity, while magnetic coupling is established
suitably positioning a second loop perpendicular to
plates. Note that, for a sufficiently small loop area, the m
sured signal is simply proportional to the electric field val
at the pick-up probe location in both cases. Data from b
electric and magnetic coupling configurations are used in
subsequent analysis.

The resonances were probed in the transmission mod
sweeping the frequency in the range between 0 and 20 G
All the measurements are carried out using an HP8510B v
tor network analyzer measuring the complex transmiss
coefficient S21( f )[(X1 iY)( f ) of the coax plus scattere
system. It is crucial to ensure that there is no spurious ba
ground scattering due to the finite size of the system. T
was verified carefully as well as that the effects of the co
pling probes were minimal and did not affect the resu
Also, we stress that dissipation effects due to finite cond
tivity of the walls are entirely negligible in the present e
periments.

III. GREEN’S FUNCTION AND EXPERIMENTAL S
PARAMETERS

A. Electromagnetic vs quantum mechanical scattering

According to Maxwell equations, the problem of statio
ary scattering of electromagnetic waves from perfect meta
conductors in a 2D plane is defined mathematically by
Helmholtz equation for the field component

~¹21k2!Ez~rW !50 ~1!

for rW5(x,y) outside the scattering region~i.e., between the
disks!, supplemented by Dirichlet boundary conditions
the perimeter of any scatterer,

Ez~rW !50, rWPperimeters, ~2!

implying, for any geometry, a vanishing electric field insid
the disks. The Helmholtz equation is formally identical to t
time-independent Schro¨dinger equation withC5Ez . Since,
in addition, the same boundary conditions apply to both
axial electric field and the wave function, the problem



ar

ar
o
e
u

n

in

m
a

pi
ily

y

t
b

in
of

s

he

n
s

ss
de
n
p

s
a
d

e-

a

ea
e
el

-

ve
e

tor

at

,
f

ed:

te

x-
ion

ves
a 2

oax
ing

n’s
en-

3654 PRE 61LU, VIOLA, PANCE, ROSE, AND SRIDHAR
equivalent to quantum mechanical scattering from h
disks. This correspondence is exact in the whole range
frequencies below the cutoff frequencyf c that are considered
in the experiment.

According to quantum scattering theory, the station
properties of the scattering process are characterized c
pletely by the collection ofS-matrix elements, expressing th
transition amplitudes between asymptotic incoming and o
going states@5,15#. TheSmatrix exhibits poles as a functio
of the wave vector~or energy! of the incoming wave. These
poles, corresponding toscattering resonances, occur in the
complex k plane,k5k81 ik9. The imaginary part is inter-
preted as a resonance half-width, implying that scatter
resonances are associated withmetastablestates having a
finite lifetime. Note that, in contrast to closed-cavity geo
etries where nonzero widths only arise due to the finite w
conductivity @16#, widths have here a purelygeometricori-
gin, the openness of the system preventing a stable trap
of the states within the scattering geometry for arbitrar
long times. We shall use the conventionk5s2 ig for a
given resonance, i.e.,s5k8 to denote the position of the
resonance along thek axis andg52k9, k9,0 to denote
half-widths in the wave-vector domain.g is related to the
observed resonance widthD f in the frequency spectrum b
D f 5(c/2p)Dk5(c/2p)2g.

The correspondence, pointed out above, between
equations of motion and the boundary conditions satisfied
electromagnetic~EM! and quantum-mechanical~QM! sta-
tionary scattering allows one to establish a direct mapp
between theS-matrix spectral properties in the domain
complex wave vectors:

~k81 ik9!EM5~k81 ik9!QM . ~3!

This mapping enables us to study the quantum propertie
the n-disk system. Note that quantum-mechanical~half!
widths G/2 for unstable states are typically defined in t
energydomain asE5E81 iE95«2 iG/2, E9,0, the rela-
tion between~complex! pseudoenergies and~complex! wave
vectors beingE5(\k)2/2m as in the real case@17,18#. Thus,
E95(\2/m)k8k9. However, due to the difference betwee
the nonstationary propagators for EM and QM problem
care should be taken when introducing and comparing a
ciated quantities like decay rates or lifetimes which are
fined in the time domain. By exploiting the time-depende
Schrödinger equation, quantum decay rates for square am
tudes uC(t)u2 are found as inverse lifetimes 1/t5G/\
5u2E9u/\. One obtainstG/\51, expressing Heisenberg’
uncertainty principle. From the full wave equation for
monochromatic field, the decay rate of the field amplitu
uEz(t)u2 is given by 1/t52gc5cu2k9u. Accordingly,
t•2gc51. In spite of such a difference, the wav
mechanical spectrum will allow us to extract a quantity~the
classical escape rate! which is related to theaveragetrapping
time of the underlying classical trajectories inside the sc
tering region.

B. Green’s function

We turn now to outline the relationship between the m
sured responseS21 and the two-point Green function of th
chaotic billiard. The equation of motion satisfied by the r
d
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evant field componentEz in the presence of a monochro
matic driving at frequencyv is

S ¹22
1

c2

]2

]t2D Ez~rW,t !5E0~rW !e2 ivt, ~4!

rW denoting 2D coordinates in the plane andE0(rW) being the
associated amplitude for waves fed into the cavity with wa
vector k5v/c. For a stationary field configuration, th
above equation reads

~¹21k2!Ez~rW !5E0~rW !. ~5!

By definition, the so-called Green’s function~or propaga-
tor! associated with the wave equation differential opera
satisfies the equation

S ¹22
1

c2

]2

]t2D G~rW,rW0 ;t,t0!5d~rW2rW0!d~ t2t0! ~6!

for fixed rW0 and t0. The Green’s functionG(rW,rW0 ;t,t0) is
identical to the wave function generated by the system
point rW and timet in response to ad-like excitation applied at
point rW0 and time t0. For a time-homogeneous system
G(rW,rW0 ;t,t0)5G(rW,rW0 ;t2t0), and Fourier transformation o
Eq. ~6! gives

~¹21k2!G~rW,rW0 ;k!5d~rW2rW0!, ~7!

where the stationary Green’s function has been introduc

G~rW,rW0 ;t2t0!5
1

2pE G~rW,rW0 ;k!eick(t2t0)dk. ~8!

Knowledge of the Green’s function allows one to calcula
the response of the system to a generic excitationE0(rW) as a
convolution integralEz(rW2)5*VG(rW2 ,rW;k)E0(rW)drW. In par-
ticular, if a pointlike probe is placed atrW1 to excite the sys-
tem, E0(rW)5E0(rW1)d(rW2rW1), we simply obtain Ez(rW2)
5G(rW2 ,rW1 ;k)E0(rW1).

The connection with the observable quantity of our e
periments is established by recalling that the transmiss
coefficientS215Vout /Vin , whereVin andVout are linear re-
sponses to the electric field at the probe locationsrW1 ~input!
andrW2 ~output!, respectively. Note thatS21 can be related to
theS-matrix element describing transmission between wa
entering through antenna 1 and going out through antenn
@19#. We haveVout5aEz(rW2) and Vin5bE0(rW1), a and b
denoting impedance factors that are characteristic of the c
lines and the analyzer, and are generally slowly vary
functions of frequency. Thus we obtain S21

5(a/b)G(rW2 ,rW1 ;k), which we can write in the form

S21~k!5A~k!G~rW2 ,rW1 ;k!. ~9!

In a formal analogy with the closed-system case, the Gree
function can be expressed in terms of a generalized eig
function expansion@17#,
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G~rW2 ,rW1 ;k!5(
n

Cn~rW2!Fn* ~rW1!

kn
22k2

, ~10!

Cn(rW) denoting thenth eigenfunction of an effective open
system Hamiltonian, with corresponding adjoint eigenst
Fn(rW) and associated~complex! wave vectorkn . It is worth
stressing that the measured Green’s function is identica
the actual Green’s function of the open system provided
perturbation introduced by the probes is negligible. If this
not the case, a modified Green’s function is generally
tained, with shifted complex poles in expansion~10! ~i.e.,
resonances are shifted and broadened due to the presen
the probes!. In the experiment, we ensured that the anten
were onlyweaklycoupled to the system, with associated p
turbation effects less than'1023 of the observed frequen
cies and widths. Under these conditions, the relation es
lished above betweenS21 and the Green’s function
generalizes the derivation for closed microwave billiards p
sented in Ref.@19#.

C. Comparison with mesoscopic conductivity measurements

The connection between so-called transmission funct
S matrix, and Green’s function is well known in the field o
mesoscopic transport@17#. In particular, we recall that the
transmission functionof a coherent conductor between tw
leads 1 and 2 is defined as@20#

T5 (
mP1,nP2

utmnu2, ~11!

where the transmission coefficienttmn , which characterizes
the transmission amplitude between modem in lead 1 and
moden in lead 2, is given by

tmn52 i\AvmvnE dy8dyfm* ~y8!fn~y!G~y8,x2 ,y,x1 ;k!.

~12!

Here vm(vn) and fm(fn) are the longitudinal velocity and
the transverse wave function for the modem in lead 1 (n in
lead 2! respectively, whilex1(2) denote the longitudinal co
ordinate of antennas 1 and 2. The transmission coefficie
which are clearly energy~frequency! dependent, are directly
related to the correspondent elements of theSmatrix. In fact,
the above expression fortmn is a two-probe version of the
general connection known as the Fisher-Lee relation betw
theSmatrix and the Green’s function@21#. The transmission
T is related directly to theconductances of the conductor by
the Landauer formula,s5(e2/h)T, e denoting the electron
charge@17#.

In the case of a pointlike excitation and a pointlike pro
ing of the system, the input-output leads act as ze
dimensional tunneling point contacts. Thus the transverse
mension of the leads can be neglected and the w
functionsfm(y) in Eq. ~12! are proportional tod functions,
fm(y8)5d(y82y2) and fn(y)5d(y2y1). By combining
the two expressions above, and puttingrW15(x1 ,y1), andrW2

5(x2 ,y2), we obtain T(k)}uG(rW2 ,rW1 ,k)u2. Since the
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Green’s function is directly related, as shown in Sec. II,
the experimental trace, one can interpret

T~k!}uS21~k!u2 ~13!

as a measurement of the two-point conductance. As a co
quence, direct comparison is possible with theories origina
developed for electronic micro-structures@10,20,22,23#.
Note that in the language of mesoscopic conductors,
weak-coupling assumption between the system and
pointlike leads implies the possibility of neglecting, as not
above, any perturbation effect associated with the so-ca
lead self-energy@17#. From a general point of view
microwave-based implementations offer, compared to th
solid-state counterparts, the advantage of a simple and p
tically unlimited manipulation of geometrical propertie
along with the possibility of changing the wave vector~and
thereby the energy! of the incoming waves at will. Finally,
since electromagnetic waves are intrinsically noninteracti
a direct analogy with the ideal limit of a noninteracting ele
tron gas applies, and microwave experiments automatic
probe quantum transport in the ballistic regime.

IV. SEMICLASSICAL THEORY

The starting point for the semiclassical derivation is t
concept of the generalized density of statesD(E) which,
according to Balian and Bloch@24#, is defined as a suitable
difference between the density of states of the free and of
scattering system. The relative density of states is relate
the S matrix in the following way:

D~E!5
1

2p i
trFS†

dS~E!

dE G . ~14!

Therefore, the densityD(E) and theSmatrix share the same
complex poles.D(E) itself is written as

D~E!52
1

p
Im g~E!, ~15!

where the functiong(E), which is related to the so-calle
quantum Selbergz function, is the trace of the differenc
between the Green’s function in the presence and in the
sence of the disks, respectively.

In the semiclassical limit,g(E) is expressed as a sum ov
periodic orbits, i.e., by Gutzwiller’s trace formula@25#. The
trace function can then be written in terms of theRuellez
functionas @3#,

g~E!5g02(
j 50

`
]

]E
ln z (1/2)1 j~ ik !, ~16!

whereg0, which is independent on the energyE, is given by
the difference between the so-called Thomas-Fermi s
densities with and without the disks, e.g.,g05
24a2m/(2\2) in the four-disk configuration. In Eq.~16!,
the Ruellez function with j running from 0 to` is given
explicitly as
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z (1/2)1 j~ ik !5)
p

@12~21!Lpeikl p/uLpu1/2Lp
b21#21,

~17!

wherek is the wave vector,l p is the length of the periodic
orbit p, Lp the number of collisions of the periodic orbit wit
the disks, andLp the eigenvalue of the so-calledstability ~or
monodromy! matrix. According to the above expressions, t
task of finding the scattering resonances of the system
reduced to the problem of identifying the complex poles
the Ruellez function. Since the Ruellez function with j
50 provides the leading contributions to the resonances w
longer lifetimes~sharper resonances!, we will only restrict
ourselves to this case in our subsequent discussion.

The Ruellez function can be conveniently expressed
terms of a so-calledEuler product representation

z215)
p

~12tp!, ~18!

tp denoting the semiclassical weight for cyclep @26#. In prac-
tice, the periodic orbit formula for the Ruelle function
evaluated by performing acycle expansionand investigating
the zeros and radii of convergence as functions of truncat
to cycles of a given maximum topological length. In th
n-disk problem, if the disks are positioned sufficiently f
from each other along a ring, it is possible to travel betwe
any three successive of them and the trapped trajectories
be put in one-to-one correspondence with the bi-infinite
quence of symbolsvk taken in the alphabet$1,2,3, . . . ,n%
with vk11Þvk . The latter constraint implies that the top
logical entropy per bounce is equal to ln(n21). Thus the
system symbolic dynamics has a finite grammar, and
Euler product~18! can be rewritten by separating out a dom
nant fundamental contribution and the remaining correc
terms:

)
p

~12tp!512(
f

t f2(
r

cr . ~19!

Here the number of fundamental termst f is equal to the
number of symbols in the unconstrained symbolic dynam
while the so-calledcurvature corrections cr represent contri-
butions due to the nonuniformity of the system@26#.

In our experiments,n identical disks are placed on a rin
with equal space between the nearest neighbors. Acc
ingly, the system is characterized by symmetry point gro
G5C2v , C3v , C4v , C5v , C6v , . . . for n52,3,4, etc., and
symmetry properties can be used to classify the corresp
ing scattering resonances. In practice, the presence of s
metries can also be exploited to simplify the cycle expans
and improve its convergence. The key concept is to rem
symmetry-induced degeneracies between cycles by redu
the dynamics to the so-calledfundamental domain. The latter
is a region obtained by ideally replacing the symmetry a
with perfectly reflecting mirrors. Global periodic orbits o
the full system can be described completely by folding ir
ducible segments into periodic orbits in the fundamental
main. Correspondingly, the Ruellez function can be factor-
ized in the product over different irreducible representatio
~irreps! of the symmetry group@26#. By taking into account
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the degeneracies of the periodic orbits and working in
fundamental domain, the Euler product~18! takes the form

)
p

~12tp!5)
p̃

~12t
p̃

hp!mp, ~20!

where a modified semiclassical weight has been introduc

t p̃5tp
1/hp5

~21!Lp̃

AL p̃

exp~ ikl
p̃
!. ~21!

In Eqs.~20! and~21!, mp5g/hp , g andhp denoting respec-
tively the order of the full symmetry groupG and of the
maximal subgroup leavingp invariant. p̃ is the irreducible
segment of the orbitp that corresponds to a fundament
domain orbit,Lp̃ is the number of collisions with the disk in
the fundamental domain, andL p̃5Lp

1/hp is the eigenvalue of
the stability matrix in the fundamental domain. The calcu
tion of L p̃ can be easily performed by diagonalizing th
stability matrix Jp̃ which, for hard-disk billiards, reads a
@26,27#

Jp̃5~21!n
p̃)
k51

np̃ S 1 l k

0 1 D S 1 0

r k 1D . ~22!

Here, for simplicity, we rescaled the constant velocity to u
value.l k denotes the length of thekth free-flight segment of
the cyclep̃, while r k52/a cosfk is the defocusing due to th
kth reflection, occurring at an incidence anglefk .

By construction, only one irreducible representation a
pears whenever the system is probed in the fundamenta
main. Note that, in practice, one can easily switch from o
symmetry to another by varying the angleu5p/n. We now
recall some relevant formulas for the symmetry configu
tions examined in the experiment.

A. C2 factorization

The groupG5C2v is the appropriate symmetry group fo
two-disk scattering which, without being chaotic, offers t
most important example of a nontrivialintegrablescattering
problem. An exact analytical solution is available for th
classical dynamics@28#, while a full quantum-mechanica
calculation of the scattering resonances was performed
Refs.@29,32#. From the standpoint of semiclassical analys
the symmetry group of the periodic orbits isG5C2, charac-
terizing the transformation properties of the orbits under
exchange of the two disks@29#. The fundamental domain is
the half-space containing a single disk. There are just
group elements,C25$e,P%, e being the identity andP the
parity operation, and only one periodic orbit. Cycles class
according to the two irreducible representationsA1 ~symmet-
ric! and A2 ~antisymmetric!. Let a and R denote the radius
and the center-center disk separation, respectively, with
ratio s[R/a. We have

zA1

21512t0 , zA2

21511t0 , ~23!

with t052exp@ik(R22a)#/AL, and

L5~s21!1As~s22!, ~24!
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denoting the eigenvalue of the monodromy matrix indica
above.

We thus obtain the semiclassical scattering resonance

kn5

~2n2m!p2
i

2
ln L

R22a
, n51,2, . . . , ~25!

wherem51 for theA1-irrep andm50 for theA2-irrep. In
the fundamental domain, only the antisymmetricA2 repre-
sentation contributes.

B. C3v factorization

The symmetric three-disk pinball is invariant under t
transformations of the groupC3v . In addition to the identity

FIG. 2. Experimental~solid line! vs semiclassical~dashed line!
transmission functionuS21u2 for a two-disk system withR
540 cm anda55 cm probed in the fundamental domain.~Inset!
Sketch of the corresponding experimental configuration. The s
ration distanceR is indicated.

FIG. 3. Experimental~solid line! vs semiclassical~dashed line!
transmission functionuS21u2 for a three-disk system in the funda
mental domain withR520A3 cm anda55 cm. The correspond
ing experimental configuration is sketched in the inset. The sep
tion distanceR is indicated.
d

as

transformation, they include two rotations through 2p/3 and
4p/3 about the main axis, and three mirror reflections arou
the symmetry axes. The fundamental domain is bounded
a disk and the two adjacent sections of the symmetry a
acting as mirrors~one-sixth of the full space; see Fig. 3
inset!. C3v has two 1D irrepsA1 and A2 ~symmetric and
antisymmetric under reflections respectively!, and one 2D
irrep of mixed symmetry labeledE. The three-disk dynami-
cal z function factorizes intoz5zA1

zA2
zE

2 , the contributions
of each given irreducible representation being given by
curvature expansion@26#

zA1

21512t02t12~ t012t0t1!2@~ t0012t0t01!

1~ t0112t1t01!#2••• ~26!

for the A1 subspace,

zA2

21511t02t11~ t012t0t1!2@~ t0012t0t01!

2~ t0112t1t01!#2•••, ~27!

for the antisymmetricA2 subspace, and

zE
21511t12~ t0

22t1
2!1~ t0012t1t0

2!

1@ t00111~ t0012t1t0
2!t12t01

2 #1••• ~28!

for the mixed-symmetry subspaceE. The representation in
the fundamental domain isA2. A detailed comparison be
tween the semiclassical predictions and the exact quan
resonances for the three-disk scattering problem was
ported in Refs.@3,30#. A semiclassical calculation usin
Fredholm determinant method was also performed in R
@31#. Exact quantum calculation was done in Ref.@32#.

C. C4v factorization

The scattering problem of four equal disks placed on
vertices of a square is characterized byC4v symmetry. This
is a group consisting of the identity, two reflections acro
the coordinate axes, two diagonal reflections, and three r
tions by anglesp/2,p, and 3p/2. The fundamental domain
is a sector delimited by a disk, a portion of the correspond
diagonal axis, and a portion of the concurrent coordinate a
@i.e., one-eighth of the full space; see Fig. 4~b!, inset#. C4v
has four 1D irreps, either symmetric (A1) or antisymmetric
(A2) under both types of reflections, or symmetric under o
and antisymmetric under the other (B1 , B2), and one 2D
representationE. The z function is factorized asz
5zA1

zA2
zB1

zB2
zE

2 , where the contributions for the variou
invariant subspaces have the following curvature expans
@26#:

zA1

21512t02t12t22~ t012t0t11t022t0t21t122t1t2!

2~ t0012t0t01!2~ t0022t0t02!2~ t0112t1t01!

2~ t0222t2t02!2~ t1122t1t12!2~ t1222t2t12!

2~ t0121t0211t0t1t22t0t122t1t022t2t01! . . . ,

a-

a-
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zA2

21511t02t11~ t012t0t1!1t022t122~ t0012t0t01!

2~ t0022t0t02!1~ t0112t1t01!1t0222t122

2~ t1122t1t12!1~ t0121t0212t0t122t1t02! . . . ,

zB1

21512t01t11~ t012t0t1!2t021t121~ t0012t0t01!

2~ t0022t0t02!2~ t0112t1t01!2t0221t122

2~ t1122t1t12!1~ t0121t0212t0t122t1t02! . . . ,

zB2

21511t01t12t22~ t012t0t1!1~ t022t0t2!1~ t122t1t2!

1~ t0012t0t01!2~ t0022t0t02!1~ t0112t1t01!

1~ t0222t2t02!2~ t1122t1t12!1~ t1222t2t12!

2~ t0121t0211t0t1t22t0t122t1t022t2t01!•••,

zE
21511t22~ t0

22t1
2!1~2t0022t2t0

222t1122t2t1
2!

1~2t001122t002212t2t0022t01
2 2t02

2 12t112222t2t112

1t12
2 2t0

2t1
2! . . . . ~29!

The representation in the fundamental domain isB2. A de-
tailed comparison between the semiclassical predictions
the exact quantum resonances for the four-disk scatte
problem was performed in Ref.@27#.

FIG. 4. Experimental~solid line! vs semiclassical~dashed line!
transmission functionuS21u2 for a four-disk system.~Top! Full space
geometry withR58 cm anda52 cm. ~Bottom! 1/8 space~fun-
damental domain! with R520 cm anda55 cm. The correspond
ing experimental configurations are sketched in the insets.
separation distanceR is indicated.
nd
g

V. COMPARISON WITH EXPERIMENTAL RESONANCES

The experimental transmission functionuS21(k)u2
5X2(k)1Y2(k) ~Sec. II! can be expressed as a superpo
tion of Lorentzian peaks,

uS21~k!u25(
i

cig i

~k2si !
21g i

2
, ~30!

where, as above,si and g i respectively denote the positio
and half-width of the resonances in thek domain. The pa-
rametersci are coupling coefficients that depend on the
cation of the two probes and reflect the coupling between
pick-up antenna with theEz pattern of a given resonan
mode. Semiclassical calculations using the appropriate c
expansion described in Sec. IV were performed for differ
geometries, leading to the real and imaginary partssi andg i
of the resonances. In comparing with the observed traces
parametersci were set manually to fit the data. For a give
scattering geometry, the traceS21 used is the average of sev
eral traces collected at different probe locations in order
avoid missing resonances due to the accidental coincide
of either probe with a node of the wave function. In gener
good agreement is found for the resonant frequencies of r
tively sharp resonances~with typical quality factors in the
rangeQ5 f /D f &50). Broader resonances with larger imag
nary parts are instead not easy to distinguish, although
resonances are always contributing to the transmission fu
tion. We now examine specific configurations.

Two-disk configuration. For two-disk scattering, prelimi-
nary measurements were reported in Ref.@33#. We carried
out experiments in both the full and half-space geometr
with a55 cm andR540 cm. According to the discussio
in Sec. IV A, the trace is expected to exhibit resonance pe
at regularly spaced locations,f n5n GHz, n51,2, . . . ,with
a constant width approximately equal toD f n.0.29 GHz
@from Eq. ~25!#. A typical experimental trace is shown i
Fig. 2, where we focuse on theA2 resonances between 0 an
20 GHz. The corresponding calculated trace is depicted
dashed line. The agreement is found to be quite good
both the resonances and their width. The regularity of suc
spectrum will manifest itself clearly in the correspondin
autocorrelation function.

Three-disk configuration. For the three-disk geometry, w
recall that a first demonstration of classical chaotic scatte
via scattering of laser light was presented in Ref.@34#. A
typical microwave trace for a three-disk scatterer withs
54A3 is presented in Fig. 3. Again, we focus on the fund
mental domain representation of the scattering geome
corresponding to resonances withA2 symmetry. The semi-
classical calculations, which are shown as a dashed line
carried out by using the cycle expansion~17! with eight pe-
riodic orbits up to period 4. We verified that they accurate
reproduce previous calculations on the same sys
@35,31,30#. For this scattering geometry, a comparison w
the exact quantum mechanical calculations is also availa
@32#, implying a stringent test for the validity of the sem
classical method. According to Fig. 3, the overall agreem
is qualitatively good, especially for the locations of th
sharper resonances.
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Four-disk configuration. The traces of a four-disk sca
terer withs54 in the full space and the fundamental doma
are shown in Fig. 4 top and bottom, respectively. Semic
sical calculations~dashed line! were performed by including
a total of 14 periodic orbits up to period 3 along the sa
procedure adopted in Ref.@27#. Resonances belonging to di
ferent symmetry characters can be identified in the full-sp
configuration and compared with the semiclassical pre
tions @27#. A similar comparison can be performed in th
fundamental domain, only based on resonances in theB2
subspace. As for the three-disk case, the semiclassical th
provides a qualitatively fair prediction of the resonance f
quencies. We observe that, in general, the agreement fo
lowest-energy widths is not as satisfactory, with discrep
cies increasing with decreasing frequencies. This kind of
crepancy, which is also found in the three-disk geome
discussed above, is intrinsic to the semiclassical calcula
because of the large correction of the stationary phase
proximation@29#. For three-@3,30,32# and four-disk@27# sys-
tems, where exact quantum-mechanical calculations
available, the very low-lying resonance widths of semicl
sical resonances appear to be systematically bigger~up to a
factor 3! compared to the corresponding quantum ones.

A few general remarks are in order. Although the agr
ment between the experimental scattering resonances an
corresponding semiclassical predictions is generally with
few percent ('5%), some discrepancies are also sho
from the data we analyzed. Such discrepancies may man
themselves in the form of both frequency shifts or wid
modifications of the predicted resonances, as well as in
presence of additional peaks in the experimental trace. V
ous mechanisms and experimental limitations are expecte
contribute as possible sources of errors, including symme
breaking perturbations introduced by nonperfect geometr
effects associated with spurious reflections, nonidealitie
the operations of the microwave absorbers~e.g., frequency-
dependent response!, or slight height variations over the cav
ity area. The combined action of such mechanisms ma
open-geometry microwave experiments comparatively m
demanding with respect to their closed-cavity counterp
where some of the above error sources are practically ir
evant. While a deeper understanding of the unavoidable n
idealities faced by the experiments, along with the neces
technical improvements, are likely to be necessary for es
lishing a fully quantitative detailed comparison, the level
agreement reached in our present investigation can be
sidered a very satisfactory match with the opportunity
retaining a relatively simple experimental methodology.

VI. SPECTRAL AUTOCORRELATION

We now turn to analyze the data in terms of the so-ca
spectral autocorrelation function, which was calculated as

C~k!5^uS21„k2~k/2!…u2uS21„k1~k/2!…u2&k . ~31!

Here k is the wave-vector difference, and̂&k denotes an
average over a band of wave vectors centered at some v
k5k0 and of width Dk, the latter being large enough t
include an appreciable number of resonances. Average~31!
also includes a suitable window function which is chosen
@36#
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f ~x!5H 12uxu/A6, uxu,A6

0, uxu>A6,
x5

k2k0

Dk
. ~32!

Besides its intrinsic interest, an additional motivation for i
vestigating the properties ofC(k) comes from the corre-
spondence, pointed out in Sec. III C, with experiments p
formed on mesoscopic transport. For ballistic conductors
formally similar magnetic-field correlation function receive
extensive theoretical and experimental attention as a po
tial probe for quantum chaos@10,36#. A similar autocorrela-
tion measure was also considered recently in the contex
molecular photodissociation spectra@37#. In our microwave
experiments, the wave vector plays the role of the magn
field, and, sinceuS21(k)u2}T(k), the functionC(k) can be
regarded as a measure of the wave-vector correlations o
two-probe conductance. The dependence of the autocor
tion function on both the finite windowDk and the center
point k0 has been checked in the calculations. We consi
the average of autocorrelations with a differentk0 to com-
pensate for slight dependences on the center point. Plo
typical experimental autocorrelations for two-, three-, a
four-disk systems are shown in Figs. 5, 6, and 7, resp
tively.

By inserting the explicit representation ofuS21(k)u2 as a
sum of Lorentzians, Eq.~30!, the autocorrelation is found a

C~k!5p(
i , j

cicj~g i1g j !

~k2~si2sj !!21~g i1g j !
2

. ~33!

In a regime where there are no overlapping resonan
usi2sj u@(g i1g j ), and the small-k behavior of the autocor-
relation can be simplified as@35#

C~k!'p(
i

2ci
2g i

k214g i
2

. ~34!

FIG. 5. Wave-vector autocorrelationC(k) of the two-disk sys-
tem with R540 cm anda55 cm. Data are shown for the half
space configuration of the two-disk geometry, corresponding to
A2 representation. The correlation is calculated with intervalDk
53 cm21. The different sets represent different values of the c
tral wave vectork0. The bold line is a Lorentzian withgqm

50.083 cm21.
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By exploiting a result from semiclassical random mat
theory, the above sum can be replaced by a single Lorent
@38,39#

C~k!5C~0!
1

11~k/g!2
, ~35!

where the parameterg5gcl is identified with theclassical
escape ratefrom the chaotic scattering region, with the v
locity scaled to 1. Accordingly, one can interpret the wid
of the autocorrelation function as anaverage width~and
thereby lifetime! of the resonances@40,41#.

FIG. 6. Wave-vector autocorrelationC(k) of the three-disk sys-
tem withR520A3 cm anda55 cm. Data are taken in the funda
mental domain, corresponding to theA2 representation. The corre
lation is calculated with intervalDk52 cm21. The different sets
represent different values of the central wave vectork0. The bold
line is a Lorentzian withgqm50.064 cm21.

FIG. 7. Wave-vector autocorrelationC(k) of the four-disk sys-
tem withR520A2 cm anda55 cm. Data are taken in the funda
mental domain, corresponding to theB2 representation. The corre
lation is calculated with intervalDk53 cm21. The different sets
represent different values of the central wave vectork0. The bold
line is a Lorentzian withgqm50.070 cm21.
an

A. Universal features: Classical escape rate

According to the above predictions, auniversalbehavior
of the the autocorrelation function is expected for sufficien
small correlation scales, regardless of the details of the
ometry and the way the system is excited. Such a unive
behavior is captured by the single classical parameterg. We
recall its definition. Classically, if we shoot particles towa
the scatterer, the numberN(t) of particles remaining in the
scattering region after timet decays exponentially as

N~ t !5N~0!exp~2g̃clt !, ~36!

where g̃cl5l(12d) is the classical escape rate,l is the
Lyapunov exponent of the manifold of infinitely trapped o
bits ~strange repeller!, andd is the information dimension o
the unstable manifolds. The scaled escape rate, corresp
ing to the unit velocity, is defined asgcl5g̃cl /v, v being the
speed of the particles. The classical escape rate can be
culated through theclassicalRuellez function @4,5#,

zb~s!5)
p

@12exp~slp!/uLpuLp
b#21, ~37!

which is analytical in the half-plane Res,2P(b), and has
poles in the other half-plane. In particular,zb(s) has a
simple pole ats52P(b). HereP(b) is the so-called Ruelle
topological pressure, from which all the characteristic qu
tities of classical dynamics can be derived in principle. T
classical escape rate isgcl52P(1).

For the various scattering geometries investigated exp
mentally, we calculated the appropriate autocorrelation fu
tion from the observed trace, and fitted the small-k portion of
the resulting curve with the Lorentzian behavior~35!,
thereby extracting an experimental escape rategqm . In gen-
eral, good agreement is observed with the classical pre
tion gcl , implying that in the regime of universalitythe
characteristic scale of wave-vector correlations in the me
sured two-point quantum conductance is well reproduced
knowledge of the chaotic classical scattering dynami
through the classical escape rategcl .

Two-disk configuration. For an integrable two-disk sys
tem, the information dimensiond50, thusg̃cl5l. For unit
velocity andR.2a, we obtain@5#

gcl5l5
1

R22a
ln L, ~38!

L[L(s) being the eigenvalue of the monodromy matr
introduced in Eq.~24!. The autocorrelation for the exper
mental set up witha55 cm and R540 cm (s58) is
shown in Fig. 5. A valuegqm50.083 cm21 is found, which
is in excellent agreement with the classical resultgcl
50.088 cm21.

Three-disk configuration. For the three-disk scatterer, w
have@5#

gcl.
1

R
ln~1.072s!. ~39!

A representative wave-vector autocorrelation function
this system is displayed in Fig. 3, where the fundamen
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domain configuration has been investigated witha55 cm
andR520A3 cm. From Eq.~39!, gcl.0.058 cm21, to be
compared with the experimental valuegqm50.064 cm21.
The latter, leading to a scaled valuegqma50.32, is in very
good agreement with both semiclassical and Monte C
estimates as given by Ref.@30#. The quantitative agreemen
between the small-k decay of correlations and the Lorentzia
curve demonstrates explicitly that behavior in such a reg
is universal, with no dependence on the actual details of
geometry.

Four-disk configuration. For the four-disk scatterer, w
use the results of Refs.@4,5# for comparison with the experi
mental data. Asymptotically, for largeR,

gcl.
1

A2R
ln~2A2s!. ~40!

The autocorrelation function for four-disk data in the fund
mental domain is displayed in Fig. 7, corresponding toa
55 cm andR520A2 cm. The valuegqm50.070 cm21

compares rather well with the estimate from Eq.~40!, gcl
50.069 cm21.

In Fig. 8, the experimental escape ratesgqm of the four-
disk system are compared with the classical predictiongcl
for several values of the ratios. Note that data are include
for 17 configurations of the different reduced~1/8, 1/4, 1/2,
and full space! representations of the four-disk geomet
shown in Fig. 4. The radius of the disks used wasa
55 cm for the 1/8 space, anda52 cm for the others. A
relevant quantity is the abscissa of absolute convergencsc
for Eq. ~17!, which can also be estimated from the Ruellez
function with the classical cycle weightstp replaced by the
corresponding semiclassical ones.sc serves as a crude lowe
bound of the escape rate@30#. The latter is also shown in Fig
8. sc becomes negative forR/a,4.5.

FIG. 8. Experimental escape rategqm scaled to radiusa51 vs
ratio s5R/a. Data are shown for different reduced configuratio
of the four-disk geometry: 1/8 space~open squares!, 1/2 space
~open circles!, 1/4 space~filled squares!, and full space~triangles!.
The classical escape rate~solid line! is calculated from the first
three periodic orbits in the fundamental domain. The absciss
convergencesc of Eq. ~17!, which is shown as a dot-dashed lin
represents a lower bound on the quantum escape rate.
lo

n
e

-

By comparing the results found for the escape rate wh
passing from two- up to four-disk scattering, progressiv
smaller values are obtained. In general, it is interesting
examine the variation of the escape parameter with incre
ing numbern of scatterers. Forn→`, one obtains a so-
called Lorentz scatterer@5#. We carried out experiments with
n520, with a corresponding~scaled! escape rategqm
.0.05, which is roughly an order of magnitude smaller th
the three- or four-disk values. In agreement with physi
intuition, this indicates that the system approaches a clo
system when the number of disks becomes very large.
cordingly, the escape rate from the chaotic region is found
be quite small.

B. Nonuniversal features

For intermediatek, the semiclassical prediction of Eq
~35! fails because of the presence of the periodic orb
which leads to anonuniversalbehavior. In the case of jus
one periodic orbit, one may express the full two-point cor
lation function as

C~k!} (
n50

`
2g

~k2nDs!214g2
, ~41!

where Ds denotes the spacing between resonances in
wave-vector domain. For example, for the two-disk proble
discussed above~Sec. IV A!, Ds52p/(R22a), provided
the space is probed through the antisymmetricA2 represen-
tation only@33#. Thus the autocorrelation oscillates with p
riod Ds. Very good agreement is found between experim
and theory for this integrable two-disk system~Fig. 5!, where
the expected valueDs.0.21 cm21 is identical with the ob-
served oscillation period.

For the three-disk scatterer in the fundamental doma
the average length of the periodic orbit per period is roug
given by (l 01 l 1)/2, the mean separation of the resonanc
being therefore

DsFD5
4p

2R2~21A3!a
. ~42!

The autocorrelation is expected to oscillate with a per
roughly equal toDsFD . The valueDsFD50.25 cm21 pre-
dicted from Eq.~42! is in very good agreement with the sca
of the oscillations in Fig. 6.

Let us finally discuss the four-disk scatterer. In the f
space, the average length of the periodic orbits per pe
can be estimated as the average length of the eight peri
orbits, 12, 23, 34, 41, 1234, 1432, 13, and 24, where 1, 2
and 4 are the labels of the four disks@26#. The mean sepa
ration between the resonances is then given approxima
by

Dsf ull5
2p

~211/A2!R2~31A2!a
. ~43!

For the four-disk system in the fundamental domain~one-
eighth of the phase space!, the average length of the period
orbit per period is (l 01 l 11 l 2)/3; thus the mean separation

of
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DsFD5
6p

~31A2!R22~21A2!a
. ~44!

The autocorrelation will oscillate with an approximate peri
equal toDsFD , which indicates the deviation from the sem
classical theory due to the presence of the periodic orb
Thus the large wave-vector~or short time! behavior is sys-
tem specific. The value ofDsFD50.21 cm21 found from
Eq. ~44! is in good agreement with the scale of oscillations
Fig. 7.

Nonuniversal contributions can play in general a cruc
role in determining the overall structure of the spectral au
correlation, since they can be of the same order of the
versal result of random matrix theory. Semiclassical meth
have recently provided an insightful tool in modeling no
universal properties in addition to universal ones@42#. Be-
side the general remarks mentioned above, the system
identification of nonuniversal features, along with their inte
play with the universal scattering properties, deserves a s
rate experimental investigation.

VII. DISCUSSION AND CONCLUSIONS

We presented an extensive experimental investigation
hard-disk chaotic scattering in microwave open cavities. T
experiments provide a conceptually clean and direct real
tion of the n-disk open billiard problem. By exploiting ou
~in principle unlimited! capability to vary the geometry, cha
otic scattering was studied in various configurations by b
changing the number of disks and the symmetry propertie
the underlying phase space.

Two main conclusions can be drawn from the expe
ments. First, the general validity and the predictive powe
semiclassical methods have been tested directly by com
ing the observed spectra with the corresponding semicla
cal predictions. Qualitative agreement has been verified in
the situations investigated, and quantitative compari
found for a wide class of relatively sharp resonances. In
dition, the experiments point out the validity of the wav
cs
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vector autocorrelation function as a probe for phase-sp
structure and quantum chaos. Values of wave-mechanica
cape rates have been extracted from the observed autoc
lations, and compared to their classical counterparts. In g
eral, the agreement observed between the measured e
parameters and the corresponding semiclassical predic
tends to be quantitatively superior to the one reachable in
detailed comparison of single resonance peaks. A sim
conclusion has been reached for closed geometries whe
much better agreement between experimental and nume
results has been obtained for the statistical properties than
the comparison of the individual resonances@43#. This fea-
ture reflects the nature of the escape rate as anaveragespec-
tral property.

We remark that the present experiments, which pro
wave-vector dependence, nicely complement measurem
performed on semiconductor microstructures, where a s
lar role has been stressed for the magnetic-field correlatio
the two-point conductance. From the broader perspectiv
quantum-classical correspondence,the experiments shed
light on the interplay between classical and quantum featu
of the scattering dynamics, by showing that measura
properties like quantum correlation lengths can be predic
from a knowledge of the classical chaotic scattering beh
ior.

Our investigation clearly points out, among other issu
the need for a deeper understanding of the nonunive
properties of the spectral statistics and their interplay w
universal ones. Such an investigation is likely to invol
wave-vector autocorrelation functions as considered in
present analysis, as well as different quantities useful to c
acterize and probe the chaotic dynamics. In general, no
tools may be required in order to pull out the whole amou
of information encapsulated in the observed spectra. Wor
ongoing along these directions.
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