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Microwave study of quantum n-disk scattering
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We describe a wave-mechanical implementation of classically chaatisk scattering based on thin two-
dimensional microwave cavities. Two-, three-, and four-disk scatterings are investigated in detail. The experi-
ments, which are able to probe the stationary Green'’s function of the system, yield both frequencies and widths
of the low-lying quantum resonances. The observed spectra are found to be in good agreement with calcula-
tions based on semiclassical periodic orbit theory. Wave-vector autocorrelation functions are analyzed for
various scattering geometries, the small wave-vector behavior allowing one to extract the escape rate from the
quantum repeller. Quantitative agreement is found with the value predicted from classical scattering theory.
For intermediate energies, nonuniversal oscillations are detected in the autocorrelation function, reflecting the
presence of periodic orbits.

PACS numbegps): 05.45.Mt, 05.45.Ac, 03.65.Sq, 84.4

[. INTRODUCTION geometries where, under appropriate conditions, the underly-
ing Helmholtz equation maps exactly into the time-
The system of-disks on a plane is perhaps the simplestindependent Schainger equation in two dimensions. Ex-
and paradigmatic example of a chaotic scattering systerperiments were carried out for=1, 2, 3, and 4, as well as
[1-5]. The classical differential cross section of a systemfor largen= 20, the latter corresponding to the so-called ran-
with n>2 disks on a plane is singular, with singular pointsdom Lorentz scatterer. A concise account of the main results
forming a Cantor sdfl,3]. Thus the investigation of chaotic was presented in Ref9].
scattering geometries naturally brings in the capability to ac- The experiments, which are able to access the stationary
cess the intrinsidractal nature of the underlying classical Green'’s function of the system, yield the frequencies and the
repeller. widths of the low-lying quantum resonances. We carried out
From the perspective of quantum-classical corresponsemiclassical calculations of such resonances, which are
dence, the wave-mechanical counterpart of this “fractal pinfound to reproduce the measured spectra reasonably well.
ball game” is even more intriguing. Semiclassical attemptsOur experiments enable us to explore the role of symmetry
to treat this problem led to important theoretical advancesn a unique way by probing different irreducible representa-
and to the development of sophisticated semiclassical toolsions of the symmetry group of the scatterer. The experimen-
notably cycle expansion, that represents one of the more praal data are used to identify both universal and nonuniversal
ductive applications of periodic orbit theof$]. signatures of the classical chaos in the transmission spectra,
From a broader perspectivesdisk scattering can be re- through measures such as the spe¢talve-vectoy autocor-
garded as the prototype of apen quantum chaos system. relation function.
For closed quantum chaotic systefhdliards in particulay, Correlation functions are a valuable tool to extract key
theoretical and experimental results are available on spectraiformation on the spectral properties of the system. In me-
eigenvaluegwhich are purely rea) and a good understand- soscopic conductors, measurements of the magnetic field
ing of both universal and nonuniversal features has beenorrelation of the conductivity have provided unique insight
reached6]. Open chaotic systems are a special class of opeimto the manifestations of the chaotic classical dynamics at
qguantum systems, whereby bound states of a closed georiie quantum leve[10]. Correlations of wave functions in
etry are converted to long-lived metastable states due to cowhaotic systems have been considered recently as a probe for
pling to continua. Accordingly, eigenvalues are intrinsically classical ergodicity predictiongl1]. In the present experi-
complex, and their universal behavior is currently a subjectnents, we take advantage of our ability to vary the wave-
of considerable intere$?]. vector of the system to directly access energy correlations,
Investigation ofn-disk scattering was originally stimu- that are difficult to extract in semiconductor microstructures.
lated by the attempt of modeling unimolecular reactif®ls  The smallk (long time) behavior of the resulting autocorre-
However, the system turned out to be a good exemplificatiotation provides a measure of tiggantum escape ratevhich
for a variety of physical situations, ranging from crossroadis shown to be in good agreement with the corresponding
geometries for semiconductor devices, to electromagneticlassical value. For large (short timeg, the contribution of
and acoustic scattering, and heavy-ion nuclear reacf®hs periodic orbits is evidenced through nonuniversal oscilla-
In spite of extensive theoretical analysis, there have beetions of the autocorrelation function.
few direct experimental implementations of such chaotic The content of the paper is organized as follows. After
model geometries so far. In this paper we present the resulttescribing the experimental realization in Sec. Il, the con-
of a systematic experimental study of the quantum resorections between electromagnetic and quantum-mechanical
nances and decay characteristic of two-dimensid@al)  scattering, and between the observed transmission amplitude
scattering repellers. The experiments utilize thin microwaveand the stationary Green’s function are elucidated in Sec. Ill.
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achieve the best reflection reduction, Cu bars are attached to
the absorber from the outside. Microwaves were fed into the
system by inserting a loop-terminating coaxial line in the
vicinity of the scatterers. Since we ensure that the relation
f<f,=c/l2d=25 GHz is valid for all operating frequencies
(herek=2m=f/c, c being the speed of lightthe only allowed
electromagnetic modes are a class of Tivnsverse mag-
netic modes with no variation along the directiamrthogo-

nal to the plates. The nonvanishing field components for
these states are the axial component of the electric Eeld
and transverse components of the magnetic #gldH, , or

H=(1/ik)zxVE,. Thus, essentially, the geometry of the
experiment can be regarded as two dimensional, the whole
field configuration being accessible from knowledgeEgf
alone. The output signal can be picked up by both directly
coupling to the axial electric fielé&, (electric coupling or

by measuring the associated transverse magnetic Feld
(magnetic coupling In the first configuration, a microwave
pin is inserted through appropriate holes drilled on the top
plate of the cavity, while magnetic coupling is established by
suitably positioning a second loop perpendicular to the
plates. Note that, for a sufficiently small loop area, the mea-
sured signal is simply proportional to the electric field value
at the pick-up probe location in both cases. Data from both
electric and magnetic coupling configurations are used in the
subsequent analysis.

The resonances were probed in the transmission mode by
sweeping the frequency in the range between 0 and 20 GHz.
All the measurements are carried out using an HP8510B vec-
tor network analyzer measuring the complex transmission

In Sec. IV, the essential background on semiclassical theor§oefficient Sy(f)=(X+iY)(f) of the coax plus scatterer

is recalled, with emphasis on the role played by symmetrysystem. Itis crymal to ensure thgt thgre iS no spurious bac_k—
properties. The remaining sections are devoted to the presefitound scattering due to the finite size of the system. This
tation and the interpretation of the experimental results: ivas verified carefully as well as that the effects of the cou-
Sec. V, we present a comparison between the measurdding probes were minimal and did not affect the results.
traces and the semiclassical predictions for various scatterin@!S0, We stress that dissipation effects due to finite conduc-
geometries probed in the experiment, while in Sec. VI wellvity of the walls are entirely negligible in the present ex-
focus on the analysis of spectral autocorrelations, fronPeriments.

which the wave-mechanical escape rate can be extracted. An

overall discussion of the results and their implications, to-  1ll. GREEN'S FUNCTION AND EXPERIMENTAL S

gether with an outlook on open issues and future work, are PARAMETERS

presented in the conclusive section.

FIG. 1. Photo of the experimental apparat{i&p) closed cav-
ity. (Bottom) open cavity.

A. Electromagnetic vs quantum mechanical scattering

Il. EXPERIMENTAL REALIZATION According to Maxwell equatipns, the problem of stationj
ary scattering of electromagnetic waves from perfect metallic
The experiments were carried out in thin microwaveconductors in a 2D plane is defined mathematically by the
structures consisting of two highly conducting Cu platesHelmholtz equation for the field component
spacedd=6 mm and about 5855 cnf in area. A picture R
of a typical experimental setup is displayed in Fig. 1. Similar (V2+K?)ELr)=0 (1)
experiments irclosedgeometries have provided direct obser-
vation of scar§12], enabled precise tests of eigenvalue stafor r =(x,y) outside the scattering regidie., between the
tistics[13], and allowed experimental studies of localization diskg, supplemented by Dirichlet boundary conditions on
effects[14]. Disks and bars also made of Cu and of thicknesshe perimeter of any scatterer,
d were placed between the plates and in contact with them.
Disks of radiusa=2 and 5 cm were used in the experiments. EZ(F):O, re perimeters, 2
In order to simulate an infinite system, microwave absorber
material ECCOSORB AN-77 with thickness was sand- implying, for any geometry, a vanishing electric field inside
wiched between the plates at the edges. It is a laminatethe disks. The Helmholtz equation is formally identical to the
material and has a front surfa¢ehite) and a back surface time-independent Schadinger equation with? =E,. Since,
(gold). It is designed to reflect less than20 dB of normally  in addition, the same boundary conditions apply to both the
incident energy above 1.2 GHz, relative to a metal plate. Taxial electric field and the wave function, the problem is
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equivalent to quantum mechanical scattering from hardcevant field componenE, in the presence of a monochro-

disks. This correspondence is exact in the whole range ahatic driving at frequencw is

frequencies below the cutoff frequentythat are considered

in the experiment. 1 42 . L
According to quantum scattering theory, the stationary EAr,t)=Eo(r)e"', (4)

properties of the scattering process are characterized com-

pletely by the collection o&matrix elements, expressing the -

transition amplitudes between asymptotic incoming and outt denoting 2D coordinates in the plane ag{r) being the

going state$5,15]. The S matrix exhibits poles as a function associat(id amplitude for waves fed _into the c_avity \_/vith wave
of the wave vectofor energy of the incoming wave. These vector k—w/_c. For a stationary field configuration, the
poles, corresponding tecattering resonance®ccur in the above equation reads

complexk plane,k=k’'+ik”. The imaginary part is inter-
preted as a resonance half-width, implying that scattering
resonances are associated witletastablestates having a
finite lifetime. Note that, in contrast to closed-cavity geom-
etries where nonzero widths only arise due to the finite wal
conductivity[16], widths have here a purelyeometricori-

gin, the openness of the system preventing a stable trapping ( 1 52

(VZ+K2)EL(r)=Eq(r). (5)

By definition, the so-called Green'’s functidor propaga-
or) associated with the wave equation differential operator
atisfies the equation

- . Lot J
of the states within the scattering geometry for arbitrarily Vi- — —
long times. We shall use the conventiti=s—iy for a c? at?
given resonance, i.es=k’ to denote the position of the . .
resonance along thk axis andy=—k”, k”<0 to denote for fixed ro andt,. The Green's functiorG(r,r;t,t) is
half-widths in the wave-vector domainy. is related to the identical to the wave function generated by the system at
observed resonance widthf in the frequency spectrum by pointFand timet in response to &-like excitation applied at
Af=(c/2m)Ak=(c/2m)2y. point ry and timet,. For a time-homogeneous system,

Th? correspo.ndence, pointed out abo_ye, betvyeep th&(ﬂ Fo;t,to)=G(F, Fo;t—to), and Fourier transformation of
equations of motion and the boundary conditions satisfied b%q (6) gives

electromagnetid EM) and quantum-mechanic&QM) sta-
tionary scattering allows one to establish a direct mapping
between theSmatrix spectral properties in the domain of
complex wave vectars

(k" +ik") em= (K" +ik")om- (3

G(r,ro;t,te)=8(r—ro)d(t—ty)  (6)

(V24K G(r,rg;k)=8(r—rp), (7)

where the stationary Green'’s function has been introduced:

N 1 . .
i - . ick(t—tg)
This mapping enables us to study the quantum properties of Grroit=to) 2wf Glr.rokje dk @

the n-disk system. Note that quantum-mechani¢hhalf)

widths I'/2 for unstable states are typically defined in theKnowledge of the Green’s function allows one to calculate
energydomain asE=E'+iE"=¢—il'/2, E"<O0, the rela- the response of the system to a generic excitﬁg(rf) as a
tion betvge_er(comfr;f%/gseudqenﬁrgleslamd(;-n;pie& _‘I’_Vr?ve convolution integralE,(r,) = [yG(r,,r;K)Eo(r)dr. In par-
\Ig’e’cztczrhszl ri;l%(”.(Ho)we\;Te]résdISet t?) rt?% Sj%‘?[ere;wc% betjvie’zen ticular, if a p0|ntILke pEOb? IS pIaced. & to eXCIt? the SYs
the nonstationary propagators for EM and QM problems!®M: Eo(r)=Eo(r1)8(r—ry), we simply obtain E,(ry)
care should be taken when introducing and comparing asse= G(r2,r1;K)Eo(r1).

ciated quantities like decay rates or lifetimes which are de- The connection with the observable quantity of our ex-
fined in the time domain. By exploiting the time-dependentperiments is established by recalling that the transmission
Schralinger equation, quantum decay rates for square amplicoefficientS; =V, /Vi, , whereV;, andV,,, are linear re-
tudes |W(t)|? are found as inverse lifetimes 7 T'/4  sponses to the electric field at the probe locationgénput)

:|2E"|/_ﬁ- One obtainsr'/A=1, expressing Heisenberg's andr, (outpud, respectively. Note tha,, can be related to
uncertainty principle. From the full wave equation for athe Smatrix element describing transmission between waves
monochromatic field, the decay rate of the field amplitudeentering through antenna 1 and going out through antenna 2
|[E,(1)|* is given by 1/=2yc=c|2k"|. Accordingly, [19]. We haveV, = aE,(f,) andV, = BEq(fy), « and 3

T'2’)|T1C:.1.| In stp|te OT” SHCh a td|ffer£encte, the wave- denoting impedance factors that are characteristic of the coax
mechanical spectrum will allow us to extract a quanihe lines and the analyzer, and are generally slowly varying

classical escape ratevhich is related to thaveragetrapping functions of frequency. Thus we obtain Sy

time of the underlying classical trajectories inside the scat- - . Lo
tering region. ying J =(alB)G(r,,ry;k), which we can write in the form

Su(K)=AK)G(r,r;K). 9

We turn now to outline the relationship between the meain a formal analogy with the closed-system case, the Green’s
sured respons8,; and the two-point Green function of the function can be expressed in terms of a generalized eigen-
chaotic billiard. The equation of motion satisfied by the rel-function expansiofl7],

B. Green’s function
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P (Fz)‘b*(F ) Green'’s function is directly related, as shown in Sec. I, to

G(ry, My k)= — . “2 v, (100  the experimental trace, one can interpret
n ki—k

i T (k)| Spy(k)[? (13

V¥ ,(r) denoting thenth eigenfunction of an effective open-

system Hamiltonian, with corresponding adjoint eigenstateas a measurement of the two-point conductance. As a conse-

q;n(F) and associatettompley wave vectork, . It is worth ~ quence, direct comparison is possible with theories originally
stressing that the measured Green’s function is identical téeveloped for electronic micro-structured0,20,22,23

the actual Green’s function of the open system provided th&lote that in the language of mesoscopic conductors, the
perturbation introduced by the probes is negligible. If this isweak-coupling assumption between the system and the
not the case, a modified Green's function is generally obpointlike leads implies the possibility of neglecting, as noted
tained, with shifted complex poles in expansiofl0) (i.e., above, any perturbation effect associated with the so-called
resonances are shifted and broadened due to the presencdesd self-energy[17]. From a general point of view,
the probes In the experiment, we ensured that the antennagicrowave-based implementations offer, compared to their
were onlyweaklycoupled to the system, with associated per-solid-state counterparts, the advantage of a simple and prac-
turbation effects less thas 10~2 of the observed frequen- tically unlimited manipulation of geometrical properties,
cies and widths. Under these conditions, the relation estatlong with the possibility of changing the wave vectand
lished above betweenS,, and the Green’s function thereby the energyof the incoming waves at will. Finally,

generalizes the derivation for closed microwave billiards preSince electromagnetic waves are intrinsically noninteracting,
sented in Ref[19]. a direct analogy with the ideal limit of a noninteracting elec-

tron gas applies, and microwave experiments automatically

. . . . probe quantum transport in the ballistic regime.

C. Comparison with mesoscopic conductivity measurements
The connection between so-called transmission function,

S matrix, and Green'’s function is well known in the field of

mesoscopic transpoffl7]. In particular, we recall that the The starting point for the semiclassical derivation is the

transmission functioof a coherent conductor between two concept of the generalized density of staf2éE) which,

IV. SEMICLASSICAL THEORY

leads 1 and 2 is defined §30] according to Balian and Blocf4], is defined as a suitable
difference between the density of states of the free and of the
T= ltmnl2, (11) scattering system. The relative density of states is related to
melne? the S matrix in the following way:
where the transmission coefficieft,, which characterizes 1 +dS(E)
the transmission amplitude between maoden lead 1 and D(E)= ﬁtr S dE |’ (14)

moden in lead 2, is given by

Therefore, the densit® (E) and theS matrix share the same

t = —iﬁ\/mf Ay dye(y") bn(Y)G(Y' Xa,y,XeK). complex polesD(E) itself is written as
(12 1
D(E)=——Img(E), (15
Herev (v, and ¢ (¢,) are the longitudinal velocity and
the transverse wave function for the maden lead 1 ( in
lead 2 respectively, whilex,,) denote the longitudinal co-
ordinate of antennas 1 and 2. The transmission coefficient
which are clearly energgfrequency dependent, are directly
related to the correspondent elements ofS$tmeatrix. In fact,
the above expression fdf,, is a two-probe version of the
general connection known as the Fisher-Lee relation betwe
the Smatrix and the Green’s functidi21]. The transmission
T is related directly to theonductancer of the conductor by
the Landauer formulag=(e?/h) T, e denoting the electron
charge[17]. .

In the case of a pointlike excitation and a pointlike prob- g(E)=go—JZO E'n {arzy+(iK), (16)
ing of the system, the input-output leads act as zero-

dimensional tunneling point contacts. Thus the transverse di/'vherego which is independent on the enerfyis given by

mens_,ion of th‘? leads can be neg_lected and t_he WaVfe difference between the so-called Thomas-Fermi state
functions¢(y) in Eq. (12) are proportional ta’ functions,

N e o L densities with and without the disks, e.g.go=
bm(y") =y _YZ) and ¢>n(y)—5(y—_¥1). By combining —4a?m/(242) in the four-disk configuration. In E(16),
the two expressions above, and puttng=(x,y1), andra  the Ruelle{ function with j running from 0 tox is given
=(X,,Y5), we obtain T(k)=|G(r,,r;,k)|2. Since the explicitly as

where the functiorg(E), which is related to the so-called
uantum Selberd function, is the trace of the difference
‘etween the Green'’s function in the presence and in the ab-
sence of the disks, respectively.
In the semiclassical limig(E) is expressed as a sum over
e,tﬁeriodic orbits, i.e., by Gutzwiller's trace formu]25]. The
trace function can then be written in terms of tReelle {
functionas([3],

0
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) Lo 2 Bm1—1 the degeneracies of the periodic orbits and working in the
§(1/2)+j(|k):1_p[ [1—(=1) ee™pl|A[Y°AL™ 7Y, fundamental domain, the Euler prody8) takes the form

17
wherek is the wave vectorl,, is the length of the periodic

orbit p, L, the number of collisions of the periodic orbit with . ) ) . .
the disks, and\ , the eigenvalue of the so-callthbility (or where a modified semiclassical weight has been introduced:

monodromy matrix. According to the above expressions, the

[T a-tp=11 (1-t7)"™, (20
p

_ 1%
task of finding the scattering resonances of the system is t5=t;/hp=( D pexka)_ (21)
reduced to the problem of identifying the complex poles of \/A_B P

the Ruelle¢ function. Since the Ruell€ function with j .
—0 provides the leading contributions to the resonances with? Eds.(20) and(21), my=g/h,, g andh, denoting respec-
longer lifetimes(sharper resonandesve will only restrict ~ tively the order of the full symmetry grou@ and of the

ourselves to this case in our subsequent discussion. maximal subgroup leaving invariant. p is the irreducible
The Ruelle/ function can be conveniently expressed insegment of the orbip that corresponds to a fundamental
terms of a so-calleéuler product representation domain orbit,L; is the number of collisions with the disk in
the fundamental domain, armng;/hp is the eigenvalue of
=11 (1-tp), (18) the stability matrix in the fundamental domain. The calcula-
p tion of A; can be easily performed by diagonalizing the

) ) ) ) stability matrix J; which, for hard-disk billiards, reads as
t, denoting the semiclassical weight for cy@§26]. In prac- [26,27]

tice, the periodic orbit formula for the Ruelle function is 5

evaluated by performing eycle expansiomand investigating ™ (1 1,\/1 O
the zeros and radii of convergence as functions of truncations BH=(=D% o 1/l 1)
to cycles of a given maximum topological length. In the K
n-disk problem, if the disks are positioned sufficiently far o0 for simplicity, we rescaled the constant velocity to unit
from each other along a ring, it is possible to travel between

. . . value.l, denotes the length of theh free-flight segment of
any three successive of them and the trapped trajectories cgn k g 9 9

be put in one-to-one correspondence with the bi-infinite se;[-( ﬁ cyfcI:Iep., while rk=_2/a cos¢k'is t_r(;e defocusing due to the
quence of symbolsy, taken in the alphab€il,2,3 ... n} th reflection, occurring at an incidence anglg. .

with w7 wy. The latter constraint implies that the topo- By construction, only one irreducible representation ap-
logical entropy per bounce is equal to fir(1). Thus the pears whenever the system is probed in the fundamental do-

system symbolic dynamics has a finite grammar, and th ain. Note that, in practice, one can easily switch from one
Euler produc{18) can be rewritten by separating out a domi- Symmetry to another by varying the angle= w/n. We now

nant fundamental contribution and the remaining correctivJ_eCaII some rele_vant formul_as for the symmeiry configura-
terms: tions examined in the experiment.

(22
k=1

A. C, factorization

]_p[ (1—tp)=1—2f tf—g c . (19)

The groupG=C,, is the appropriate symmetry group for
two-disk scattering which, without being chaotic, offers the
Here the number of fundamental terrhsis equal to the most important example of a nontrivialtegrablescattering
number of symbols in the unconstrained symbolic dynamicsproblem. An exact analytical solution is available for the
while the so-callecturvature corrections crepresent contri- classical dynamic$28], while a full quantum-mechanical
butions due to the nonuniformity of the syst¢g6]. calculation of the scattering resonances was performed in

In our experimentsn identical disks are placed on a ring Refs.[29,32. From the standpoint of semiclassical analysis,
with equal space between the nearest neighbors. Accordhe symmetry group of the periodic orbits@-=C,, charac-
ingly, the system is characterized by symmetry point grougerizing the transformation properties of the orbits under the
G=Cy,,, C3,, Cy,, Cs,, Cq,, ... forn=2,3,4, etc., and exchange of the two dis29]. The fundamental domain is
symmetry properties can be used to classify the correspondhe half-space containing a single disk. There are just two
ing scattering resonances. In practice, the presence of symyroup elementsC,={e,P}, e being the identity andP the
metries can also be exploited to simplify the cycle expansiomparity operation, and only one periodic orbit. Cycles classify
and improve its convergence. The key concept is to removaccording to the two irreducible representatidqssymmet-
symmetry-induced degeneracies between cycles by reducing) and A, (antisymmetrig. Let a and R denote the radius
the dynamics to the so-callédndamental domairThe latter  and the center-center disk separation, respectively, with the
is a region obtained by ideally replacing the symmetry axesatio o=R/a. We have
with perfectly reflecting mirrors. Global periodic orbits of
the full system can be described completely by folding irre- {;11=1—t0, 5;21:1+t0, (23
ducible segments into periodic orbits in the fundamental do-
main. Correspondingly, the Ruelfefunction can be factor-  with t,= —exgik(R—2a)]/\/A, and
ized in the product over different irreducible representations
(irreps) of the symmetry group26]. By taking into account A=(oc—1)+o(o—2), (24)
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0.00012 transformation, they include two rotations through/3 and
R/ 44r/3 about the main axis, and three mirror reflections around

0.0001 - the symmetry axes. The fundamental domain is bounded by
= N a disk and the two adjacent sections of the symmetry axes
't | acting as mirrors(one-sixth of the full space; see Fig. 3,
50.00008 , ) ! .
> inse). C,, has two 1D irrepsA; and A, (symmetric and
o antisymmetric under reflections respectiyelgnd one 2D
50'00006 | irrep of mixed symmetry labeleH. The2 three-disk dynami-
07_‘!0.00004 | ] cal¢ funct.lon fgctonze_s int@ = gAlgAzg_E, the _contr_lbutlons
u‘;‘-‘ of each given irreducible representation being given by the
= ; curvature expansiof26]

0.00002 - ‘ TLL B

§A11=l—to—tl—(t01—tot1)—[(t001—t0t01)
0

0 2 4 6 8 10 12 14 16 18 20 + (to—tator) =+ - (26)
Frequency (GHz)
FIG. 2. Experimenta(solid line) vs semiclassicaldashed ling for the A, subspace,

transmission function|S,,|? for a two-disk system withR

=40 cmanda=5 cm probed in the fundamental domajmse} (;21: 1+to—ty+ (tor—tots) —[(too1—totor)
Sketch of the corresponding experimental configuration. The sepa-
ration distanceRr is indicated. —(tonr—tato) J—- -+, (27

denoting the eigenvalue of the monodromy matrix indicatedor the antisymmetri, subspace, and
above.
We th in th miclassical ring resonan -
e thus obtain the semiclassical scattering resonances as (=14t — (2= 12) + (toor—t1t2)

(2n—m)m— i_|nA +[tooat (topr—tatd)ts—t5 1+ - - - (29)
2

k,= n=12,..., (25

R—2a ' for the mixed-symmetry subspa&e The representation in
the fundamental domain i8,. A detailed comparison be-
wherem=1 for the A;-irrep andm=0 for the A,-irrep. In tween the semiclassical predictions and the exact quantum

the fundamental domain, only the antisymmethis repre-  resonances for the three-disk scattering problem was re-

sentation contributes. ported in Refs.[3,30]. A semiclassical calculation using
Fredholm determinant method was also performed in Ref.
B. Cs, factorization [31]. Exact quantum calculation was done in R&2].

The symmetric three-disk pinball is invariant under the
transformations of the grou@s, . In addition to the identity C. Cy, factorization

The scattering problem of four equal disks placed on the

0.00004 vertices of a square is characterized®y, symmetry. This
is a group consisting of the identity, two reflections across
the coordinate axes, two diagonal reflections, and three rota-
£0.00003 - tions by anglesr/2,7, and 37/2. The fundamental domain
E is a sector delimited by a disk, a portion of the corresponding
E diagonal axis, and a portion of the concurrent coordinate axis
%0.00002 | [ie., one-eighth of the full space; see Figb} i'nseﬂ. Cup
= has four 1D irreps, either symmetrié\{) or antisymmetric
ol (A,) under both types of reflections, or symmetric under one
“—5:0 00001 and antisymmetric under the o_theBl_(, B,), and one 2D
: representationE. The ¢ function is factorized as¢
:gAlgAnglnggé- where the contributions for the various
invariant subspaces have the following curvature expansions
0 S T T T [26]:
0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz) 5;11: 1—-to—ti—ty—(tor—tots Htoa—tota +tio—tsty)
FIG. 3. Experimenta(solid line) vs semiclassicaldashed ling
transmission functiodS,;|? for a three-disk system in the funda- — (too1~ totor) — (tooz~ totoa) = (tora—titor)
mental domain wittR=20,3 cm anda=5 cm. The correspond- — (topo—toton) — (trgo—tit1n) — (tiop—totsn)

ing experimental configuration is sketched in the inset. The separa-
tion distanceR is indicated. —(torot+toprt+totato—totio—titgo—totor) - - -,
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FIG. 4. Experimenta(solid line) vs semiclassicaldashed ling
transmission functiohS,;|2 for a four-disk system(Top) Full space
geometry withR=8 cm anda=2 cm. (Bottom) 1/8 spaceg(fun-

damental domainwith R=20 cm anda=5 cm. The correspond-
ing experimental configurations are sketched in the insets. Th

separation distandR is indicated.

§/§21= 1+to—ty+ (tor—tots) +too—tio— (toor—totor)

— (tooz—totor) + (tor1—titor) +tooo—tize

— (tyo—tatso) + (torot top—totio—tatoo) - - -,

L, =1—toTt1+ (tortots) —topt tipt (toor—totor)

— (tooz—toton) — (toar—tator) —topottizn

—(tyo—tatsn) + (torot topr—totio—titer) - . -,

L, =L1+totti—to— (tor—tots) + (top—toto) + (tip—tato)
+ (toor— totor) — (tooo—totoa) + (tor1—titos)
+ (tooo— taton) = (tr1o—tytyp) + (tiop— tots))

— (toazt oot totata—totio—tatoo—toto) - - -,

(et =1+t (15— tD) + (2tgoo—tot — 2ty1— tot?)
+(2too11— 2tooazt 2tatoos— 51— tho+ 2ti1os— 2totann

+th,—tatd) ... . (29)

The representation in the fundamental domaiBjs A de-
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V. COMPARISON WITH EXPERIMENTAL RESONANCES

The experimental transmission functior}S,,(k)|?
=X2(k)+Y2(k) (Sec. 1) can be expressed as a Superposi-
tion of Lorentzian peaks,

ISu(k)[2= —

T (k=s)%+ 97 %0

where, as aboves; and y; respectively denote the position
and half-width of the resonances in tkedomain. The pa-
rametersc; are coupling coefficients that depend on the lo-
cation of the two probes and reflect the coupling between the
pick-up antenna with thde, pattern of a given resonant
mode. Semiclassical calculations using the appropriate cycle
expansion described in Sec. IV were performed for different
geometries, leading to the real and imaginary pgrend vy;

of the resonances. In comparing with the observed traces, the
parameters; were set manually to fit the data. For a given
scattering geometry, the tra8g; used is the average of sev-
eral traces collected at different probe locations in order to
avoid missing resonances due to the accidental coincidence
of either probe with a node of the wave function. In general,
good agreement is found for the resonant frequencies of rela-
tively sharp resonancesvith typical quality factors in the
rangeQ=f/Af=<50). Broader resonances with larger imagi-
pary parts are instead not easy to distinguish, although all
resonances are always contributing to the transmission func-
tion. We now examine specific configurations.

Two-disk configurationFor two-disk scattering, prelimi-
nary measurements were reported in R88]. We carried
out experiments in both the full and half-space geometries,
with a=5 cm andR=40 cm. According to the discussion
in Sec. IV A, the trace is expected to exhibit resonance peaks
at regularly spaced locationf,=n GHz,n=1,2,...,with
a constant width approximately equal fof ,=0.29 GHz
[from Eq. (25)]. A typical experimental trace is shown in
Fig. 2, where we focuse on the, resonances between 0 and
20 GHz. The corresponding calculated trace is depicted as a
dashed line. The agreement is found to be quite good for
both the resonances and their width. The regularity of such a
spectrum will manifest itself clearly in the corresponding
autocorrelation function.

Three-disk configuratiarFor the three-disk geometry, we
recall that a first demonstration of classical chaotic scattering
via scattering of laser light was presented in H&4]. A
typical microwave trace for a three-disk scatterer with
=4./3 is presented in Fig. 3. Again, we focus on the funda-
mental domain representation of the scattering geometry,
corresponding to resonances with symmetry. The semi-
classical calculations, which are shown as a dashed line, are
carried out by using the cycle expansid¥) with eight pe-
riodic orbits up to period 4. We verified that they accurately
reproduce previous calculations on the same system
[35,31,3Q. For this scattering geometry, a comparison with
the exact quantum mechanical calculations is also available
[32], implying a stringent test for the validity of the semi-

tailed comparison between the semiclassical predictions anclassical method. According to Fig. 3, the overall agreement
the exact quantum resonances for the four-disk scattering qualitatively good, especially for the locations of the

problem was performed in Ref27].

sharper resonances.
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Four-disk configuration The traces of a four-disk scat- 1o
terer witha=4 in the full space and the fundamental domain 3

- ko=1.83(1/cm)

are shown in Fig. 4 top and bottom, respectively. Semiclas-.E ~ko=2.09(1/cm)
sical calculationgdashed lingwere performed by including 50'8 ~-ko=2.35(1/om)
a total of 14 periodic orbits up to period 3 along the same £ — Lorentzian
procedure adopted in RéR7]. Resonances belonging to dif- 8.6

ferent symmetry characters can be identified in the full-spaceg
configuration and compared with the semiclassical predic-®
tions [27]. A similar comparison can be performed in the
fundamental domain, only based on resonances inBhe
subspace. As for the three-disk case, the semiclassical theor
provides a qualitatively fair prediction of the resonance fre-
guencies. We observe that, in general, the agreement for th
lowest-energy widths is not as satisfactory, with discrepan- ¢
cies increasing with decreasing frequencies. This kind of dis- 0 0.1 0.2 03
crepancy, which is also found in the three-disk geometry k(1/cm)
discussed above, is intrinsic to the semiclassical calculation i _
because of the large correction of the stationary phase ap- FIG. 5. Wave-vector autocorrelatidd(x) of the two-disk sys-
proximation[29]. For three{3,30,34 and four-disk27] sys- & withR=40 cm anda=5 cm. Data are shown for the half-
. - space configuration of the two-disk geometry, corresponding to the

tems, where exact quantum-mechanical calculations ar/gD e . oS o

; . . . , representation. The correlation is calculated with inter&l
available, the very low-lying resonance widths of semiclas

ical to b t tically bi t =3 cm L. The different sets represent different values of the cen-
sical resonances appear to be systematically biggeto a tral wave vectork,. The bold line is a Lorentzian withyym

lized
o
S

Norma
o
[\V]

0.4 0.5 0.6

factor 3 compared to the corresponding quantum ones.  _ g 9g3 cnrl.
A few general remarks are in order. Although the agree-
ment between the experimental scattering resonances and the
corresponding semiclassical predictions is generally within a f(x) = 1= |X|/‘/€’ x| < V6 X = k- kO_ (32)
few percent &5%), some discrepancies are also shown 0, |x|>\/€, Ak

from the data we analyzed. Such discrepancies may manifest
themselves in the form of both frequency shifts or widthBesides its intrinsic interest, an additional motivation for in-
modifications of the predicted resonances, as well as in theestigating the properties d€(«x) comes from the corre-
presence of additional peaks in the experimental trace. Varispondence, pointed out in Sec. Il C, with experiments per-
ous mechanisms and experimental limitations are expected formed on mesoscopic transport. For ballistic conductors, a
contribute as possible sources of errors, including symmetryformally similar magnetic-field correlation function received
breaking perturbations introduced by nonperfect geometriegxtensive theoretical and experimental attention as a poten-
effects associated with spurious reflections, nonidealities itial probe for quantum chad40,36. A similar autocorrela-
the operations of the microwave absorb@gy., frequency- tion measure was also considered recently in the context of
dependent responser slight height variations over the cav- molecular photodissociation specfi@7]. In our microwave
ity area. The combined action of such mechanisms makegxperiments, the wave vector plays the role of the magnetic
open-geometry microwave experiments comparatively moréield, and, sincdS,;(k)|?<T(k), the functionC(«) can be
demanding with respect to their closed-cavity counterpartiegarded as a measure of the wave-vector correlations of the
where some of the above error sources are practically irrekwo-probe conductance. The dependence of the autocorrela-
evant. While a deeper understanding of the unavoidable norion function on both the finite windowAk and the center
idealities faced by the experiments, along with the necessamyoint ky has been checked in the calculations. We consider
technical improvements, are likely to be necessary for estalthe average of autocorrelations with a differégtto com-
lishing a fully quantitative detailed comparison, the level of pensate for slight dependences on the center point. Plots of
agreement reached in our present investigation can be cotypical experimental autocorrelations for two-, three-, and
sidered a very satisfactory match with the opportunity offour-disk systems are shown in Figs. 5, 6, and 7, respec-
retaining a relatively simple experimental methodology.  tively.
By inserting the explicit representation [8,,(k)|? as a
VI. SPECTRAL AUTOCORRELATION sum of Lorentzians, Eq30), the autocorrelation is found as

We now turn to analyze the data in terms of the so-called cici(yi+ o)
spectral autocorrelation functigrwhich was calculated as C(k)=m, Sl hLAEA (33)

. . T (k= (5=5)%+ (vt y)?
C(k) =(|Saa(k— (x/2))|*[Sp(k+ (x/2))[*)¢.  (3D)
In a regime where there are no overlapping resonances,

Here « is the wave-vector difference, ar{dy denotes an |s,—s;|>(y;+;), and the smalk behavior of the autocor-
average over a band of wave vectors centered at some valiglation can be simplified 485]

k=k, and of width Ak, the latter being large enough to
include an appreciable number of resonances. Ave(ate 2¢2y;
. . . . . . I 1
also includes a suitable window function which is chosen as C(K)wwE — - (34
[36] i K2+4’yi
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1 A. Universal features: Classical escape rate
+|;°=;-gg g;cm; According to the above predictions,uaiversalbehavior
—-o-ko=2. cm . . . ..
0.8 | ~ko=2.30 (1/cm) of the the autt_)correlatlon function is expected fo_r sufficiently
— Lorentzian small correlation scales, regardless of the details of the ge-

ometry and the way the system is excited. Such a universal
behavior is captured by the single classical paramgtée
recall its definition. Classically, if we shoot particles toward
0.4 . the scatterer, the numbék(t) of particles remaining in the
scattering region after timedecays exponentially as

0.6 1

0.2 | N(t)=N(0)exp( — yuit), (36)

Normalized autocorrelation

wherey,=\(1—d) is the classical escape rate,is the
0 0 0‘2 0'4 o‘e 08 Lyapunov exponent of the manifold of infinitely trapped or-
) ; ’ ) bits (strange repelley andd is the information dimension of
K (1/cm) .
the unstable manifolds. The scaled escape rate, correspond-

FIG. 6. Wave-vector autocorrelati@) x) of the three-disk sys- ing to the unit velocity, is defined ag, =y, /v, v being the
tem withR=20y3 cm anda=5 cm. Data are taken in the funda- speed of the particles. The classical escape rate can be cal-

mental domain, corresponding to thg representation. The corre- culated through thelassicalRuelle ¢ function[4,5],
lation is calculated with intervahk=2 cm 1. The different sets

represent different values of the central wave ve&prThe bold B Br—1
line is a Lorentzian withyy,=0.064 cm*. {p(s)= 1;[ [1—exp(slp)/|AplAG]T, (37

By exploiting a result from semiclassical random matrix Which is analytical in the half-plane Re —P(), and has

theory, the above sum can be replaced by a single LorentziapPles in the other half-plane. In particulagg(s) has a

[38,39 simple pole as= —P(B). HereP(pR) is the so-called Ruelle
topological pressure, from which all the characteristic quan-
tities of classical dynamics can be derived in principle. The
classical escape rate i,= —P(1).

(39 For the various scattering geometries investigated experi-
mentally, we calculated the appropriate autocorrelation func-
tion from the observed trace, and fitted the smafiertion of

where the parametey= v, is identified with theclassical tEe resulting curve with the Lolrentzian behavi¢ss),
escape ratérom the chaotic scattering region, with the ve- thereby extracting an experimental escape #gfg. In gen-
locity scaled to 1. Accordingly, one can interpret the width ©ral: good agreement is observed with the classical predic-

of the autocorrelation function as aaverage width(and 10N Yer, IMplying that in the regime of universalithe
thereby lifetime of the resonance0,41]. characteristic scale of wave-vector correlations in the mea-

sured two-point quantum conductance is well reproduced by
knowledge of the chaotic classical scattering dynamics,

C(k)=C(0) —,
() ( )l+(K/7)2

! through the classical escape ratg.
c ~o-ko=1.83(1/cm) Two-disk configurationFor an integrable two-disk sys-
'-%0.8 :::Z:;g?gﬂ; tem, the information dimensiod=0, thusy,=X\. For unit
° — Lorentzlan velocity andR>2a, we obtain[5]
£
806
*g‘ Y =A= R_ZalnA, (38)
Bo4 A=A . . .
N =A(o0) being the eigenvalue of the monodromy matrix
® introduced in Eq.(24). The autocorrelation for the experi-
§0.2 mental set up witha=5 cm andR=40 cm (=28) is
2 shown in Fig. 5. A valuey,,=0.083 cm ! is found, which
| is in excellent agreement with the classical resyl
0 =0.088 cm™.
0 0.1 1((10/gm) 0.5 06 Three-disk configuratianFor the three-disk scatterer, we
have[5]
FIG. 7. Wave-vector autocorrelatid®( «) of the four-disk sys-
tem with R=2_O\/§ cmanda=5 cm. Data are taken in the funda- Y= 1In(1.072r). (39)
mental domain, corresponding to tBg representation. The corre- R

lation is calculated with intervahk=3 cm!. The different sets . . _
represent different values of the central wave vekiprThe bold A representative wave-vector autocorrelation function for
line is a Lorentzian withyq,=0.070 cm ™. this system is displayed in Fig. 3, where the fundamental
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0.45 By comparing the results found for the escape rate while
04 1 passing from two- up to four-disk scattering, progressively
smaller values are obtained. In general, it is interesting to
0.35 - examine the variation of the escape parameter with increas-
o 031 ing numbern of scatterers. Fon—o~, one obtains a so-
5 called Lorentz scatterg¢b]. We carried out experiments with
o 9251 n=20, with a correspondingscaled escape rateyqm
s 0.2 =0.05, which is roughly an order of magnitude smaller than
] the three- or four-disk values. In agreement with physical
W 0.15 intuition, this indicates that the system approaches a closed
04 4 system when the number of disks becomes very large. Ac-
cordingly, the escape rate from the chaotic region is found to
0.05 - e be quite small.
-~
0 ; — ; ; ; ; ; ;
2 3 4 5 6 7 8 9 10 1 12 B. Nonuniversal features
R/a

For intermediatex, the semiclassical prediction of Eg.

FIG. 8. Experimental escape rajg, scaled to radius=1 vs  (35) fails because of the presence of the periodic orbits,
ratio o= R/a. Data are shown for different reduced configurationswhich leads to anonuniversalbehavior. In the case of just
of the four-disk geometry: 1/8 spadepen squargs 1/2 space one periodic orbit, one may express the full two-point corre-
(open circleg 1/4 spacdfilled squarey and full spacdtriangles. lation function as
The classical escape rateolid line) is calculated from the first
three periodic orbits in the fundamental domain. The abscissa of 2y
convergences; of Eq. (17), which is shown as a dot-dashed line, C(k)x 2 PRI
represents a lower bound on the quantum escape rate. n=0 (k—nAs)“+4y

©

(41

where As denotes the spacing between resonances in the
wave-vector domain. For example, for the two-disk problem
discussed abovéSec. IVA), As=27x/(R—2a), provided

the space is probed through the antisymmeirjcrepresen-
tation only[33]. Thus the autocorrelation oscillates with pe-
Qiod As. Very good agreement is found between experiment

domain configuration has been investigated with5 cm
andR=20y3 cm. From Eq(39), y,=0.058 cm?, to be
compared with the experimental valuyg,=0.064 cm L
The latter, leading to a scaled valgg,,a=0.32, is in very
good agreement with both semiclassical and Monte Carl
estimates as given by RdB0]. The quantitative agreement o . .

between the smak-decay of correlations and the Lorentzian flhnedetggggggr\,t;f A'r:i%zglect\r’nvf) 1 ?és.lézﬁfmﬁ tvr\llge(;s-

curve demonstrates explicitly that behavior in such a regions .\ o oscillation period.

is universal, with no dependence on the actual details of the For the three-disk scatterer in the fundamental domain
geometry. the average length of the periodic orbit per period is roughly

Four-disk configuration For the four-disk scatterer, we . .
use the results of Reff4,5] for comparison with the experi- given by (o+14)/2, the mean separation of the resonances
- being therefore

mental data. Asymptotically, for large,

— 41

1 ASpp=————. 42
%FE'n(z\EU)- (40) P oR—(2+\3)a 42
The autocorrelation is expected to oscillate with a period
roughly equal toAsgp. The valueAsgp=0.25 cm ! pre-
dicted from Eq(42) is in very good agreement with the scale
of the oscillations in Fig. 6.

Let us finally discuss the four-disk scatterer. In the full
space, the average length of the periodic orbits per period
can be estimated as the average length of the eight periodic
orbits, 12, 23, 34, 41, 1234, 1432, 13, and 24, where 1, 2, 3,
and 4 are the labels of the four disk&]. The mean sepa-
ration between the resonances is then given approximately

The autocorrelation function for four-disk data in the funda-
mental domain is displayed in Fig. 7, correspondingato
=5 cm andR=20y2 cm. The valuey,,=0.070 cm?*
compares rather well with the estimate from E40), vy,
=0.069 cm ™.

In Fig. 8, the experimental escape ratgs, of the four-
disk system are compared with the classical predictign
for several values of the rati@. Note that data are included
for 17 configurations of the different reduceéty8, 1/4, 1/2,
and full spacg representations of the four-disk geometry
shown in Fig. 4. The radius of the disks used was
=5 cm for the 1/8 space, ara=2 cm for the others. A
relevant quantity is the abscissa of absolute convergsnce A_sfu”= 2m _
for Eq. (17), which can also be estimated from the Ruélle (2+12)R—(3+2)a
function with the classical cycle weightg replaced by the
corresponding semiclassical onssserves as a crude lower For the four-disk system in the fundamental doméine-
bound of the escape rdt0]. The latter is also shown in Fig. eighth of the phase spac¢¢he average length of the periodic
8. s; becomes negative fdr/a<4.5. orbit per period isy+14,+15,)/3; thus the mean separation is

(43)
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vector autocorrelation function as a probe for phase-space
= . (44)  structure and quantum chaos. Values of wave-mechanical es-
(3+V2)R-2(2+\2)a cape rates have been extracted from the observed autocorre-
. . . . . . lations, and compared to their classical counterparts. In gen-
The auto_correlauqn W_'" qscnlate with a_n gpproxmate per'o,deral, the agreement observed between the measured escape
equal toAsp , which indicates the deviation from the semi- harameters and the corresponding semiclassical predictions
classical theory due to the presence of the periodic orbitsengs to be quantitatively superior to the one reachable in the
Thus the large wave-vectdor short timg behavior is sys-  qetajled comparison of single resonance peaks. A similar
tem specific. The value ofs;p=0.21 cm'* found from  conclusion has been reached for closed geometries where a
Eq.(44) is in good agreement with the scale of oscillations inmych better agreement between experimental and numerical
Fig. 7. results has been obtained for the statistical properties than for
Nonuniversal contributions can play in general a crucialkne comparison of the individual resonan¢é8]. This fea-

role in determining the overall structure of the SpeCtral aUtO'ture reflects the nature of the escape rate aamvanagespec-
correlation, since they can be of the same order of the uniya| property.

versal result of random matrix theory. Semiclassical methods \we remark that the present experiments, which probe

have recently provided an insightful tool in modeling non-\yave-vector dependence, nicely complement measurements
universal properties in addition to universal orid®]. Be-  performed on semiconductor microstructures, where a simi-

side the general remarks mentioned above, the systemafigr role has been stressed for the magnetic-field correlation of
identification of nonuniversal features, along with their inter-the two-point conductance. From the broader perspective of

play with the universal scattering properties, deserves a sepguantum-classical correspondenctéhe experiments shed

_ 6
Asgp

rate experimental investigation. light on the interplay between classical and quantum features
of the scattering dynamics, by showing that measurable
VIIl. DISCUSSION AND CONCLUSIONS properties like quantum correlation lengths can be predicted
W . . . N f]{om a knowledge of the classical chaotic scattering behav-
e presented an extensive experimental investigation o

. i CoorE 2 1or.
hard-disk chaotic scattering in microwave open cavities. The’

experiments provide a conceptually clean and direct realizat-h
tion of the n-disk open billiard problem. By exploiting our

Our investigation clearly points out, among other issues,
e need for a deeper understanding of the nonuniversal

(in principle unlimited capability to vary the geometry, cha- properties of the spectral statistics and their interplay with

otic scattering was studied in various configurations by bothumversal ones. Such an investigation is likely to involve

chanaina the number of disks and the symmetry properties o ave-vector autocorrelation functions as considered in the
ging th y y prop ﬁ/resent analysis, as well as different quantities useful to char-
the underlying phase space.

. ; . acterize and probe the chaotic dynamics. In general, novel
Two main conclusions can be drawn from the experi-

ments. First, the general validity and the predictive power oftOOIS may be required in order to pull out the whole amount

o Y y pre P of information encapsulated in the observed spectra. Work is
semiclassical methods have been tested directly by compag- . o
. ; X . ngoing along these directions.
ing the observed spectra with the corresponding semiclassi-
cal predictions. Qualitative agreement has been verified in all
the situations investigated, and quantitative comparison
found for a wide class of relatively sharp resonances. In ad- This work was supported by NSF Grant No. PHY-

dition, the experiments point out the validity of the wave- 9722681.
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